segunda-feira, 16 de abril de 2007

FISIOLOGIA CELULAR


FISIOLOGIA CELULAR

Cerca de 45% a 70% da massa corpórea é formada por água. A água é inversamente proporcional a quantidade de gordura corpórea. As mulheres apresentam menor volume de água corpórea em relação ao home, já que ela apresenta maior porcentagem de tecido adiposo.

DESTRIBUIÇÃO DA ÁGUA NO CORPO

Meio Intracelular à cerca de 2/3 dos líquidos se encontram no meio intracelular.
Meio Extracelular à cerca de 1/3 dos líquidos encontram-se no meio extracelular. Plasma e liquido intersticial.

O pH no meio intracelular é mais acido do que no meio extracelular. No intracelular o pH é de 7.0 e no extracelular e 7.4. A osmolaridade promove o equilíbrio entre o meio extracelular e o meio intracelular, no meio intra e extracelular essa osmolaridade é de 300 m/osm/ L.

COMPONENTES DO MEIO INTRA E EXTRACELULAR

O meio intra quanto o extracelular é formado tanto por líquidos quanto por eletrólitos e a regulação dessa quantidade desses no meio intra e extra é chamado de Homeostasia que significa o equilíbrio entre os dois meios.
Principal cátion do LEC é o Na+ e o ânion que contrabalança é o Cl- e bicarbonato.
Principal cátion do LIC K+ e Mg²+ e ânion são as proteínas e fosfatos orgânicos.

Obs: O cálcio fica localizado nos retículos sarcoplasmatico, daí pouca concentração no meio intracelular.

ELETRONEUTRALIDADE DOS COMPARTIMENTOS LIQUIDOS DO CORPO

Cada compartimento líquido do corpo obedece a regra da eletroneutralidade. Cada compartimento tem a mesma quantidade de cátions e ânions. Mesmo que haja uma diferença de potencial, o balanço entre as cargas se mantém maciças.

COMPOSIÇÃO DA MEMBRANA PLASMATICA

A membrana plasmática é formada de ácido graxo parte hidrofóbica e glicerol parte hidrofílica, o que a caracteriza como uma membrana anfipática.

Bicamada de lipídios - 55% fosflipidios
25% colesterol
13% outros lipídios ( trigliceridios)
4% carboidratos
Essa composição lipidica da membrana é responsável pela manutenção da permeabilidade, sendo altamente permeável a substancias lipossolúveis e baixa permeabilidade a substâncias hidrossolúvel.
Depois da água as proteínas são as 2ª maiores composições da massa corpórea. A proteína na membrana serve como transporte para varias substancias hidrossolúveis que não conseguem passar pela bicamada lipidica da membrana plasmática, enzimas, e receptores para hormônios.

TIPOS DE PROTEÍNAS
CANAIS AQUOSOS: transporta substancias do meio intra para o extra e vise – versa sem muito gasto de energia.
PROTEÍNAS PERIFERICAS: encontram-se localizadas nas extremidades da membrana e serve como receptores, mandando sinais para o interior da célula.
PROTEÍNAS INTEGRAIS: atravessam a membrana toda e serve para transporte de substancias hidrossolúveis.

DIFERENÇAS QUE AFETAM NA PERMEABILIDADE DA MEMBRANA

Espessuraà quanto maior a espessura menor a difusão.
Lipossolubilidadeà Quanto mais lipossolúvel maior a difusão.
Numero de canais protéicosà o numero de canais e proporcional a área da membrana.
Temperaturaà quanto maior a temperatura maior a difusão.
PM das substancias difusorasà quanto maior PM menor a difusão.

Obs: A temperaturaá torna a membrana mais permeável ao sódio promovendo uma despolarização o que leva as convulsões quando essa temperatura excede aos níveis normais de 36° a 36,6°C.

EQUILIBRIO DE GIBBS – DONNAN

É o equilíbrio entre as cargas positivas e negativas presente na membrana. O plasma é composto de proteínas plasmáticas (exemplo albumina), essas proteínas têm cargas negativas que promove a redistribuição dos pequenos cátions e ânions, através da parede do capilar. Quando esse plasma é filtrado, ou seja passa dos vasos para os tecidos ele se transforma em liquido intersticial , esse liquido não possui as proteínas plasmáticas que ficam retidas dentro do vaso o que leva a conseqüências secundarias ao equilíbrio da eletroneutralidade.

TRANSPORTE ATRAVES DA MEMBRANA

TRANSPORTE PASSIVO: SIMPLESà movimento cinético de íons ou moléculas nos espaços intermoleculares.
FACILITADA: à movimento de íons ou moléculas com ajuda de proteínas carreadoras.
Toda forma de transporte mediado por carreador tem três características: saturação, estéreo-especificidade, competição.

TRANSPORTE PASSIVO: realizado através do interstício da membrana. Ex: substancias lipossolúveis O2, CO2 ou canais aquosos em proteínas carreadoras.
TRANSPORTE ATIVO:
PRIMÁRIO: utiliza energia diretamente do ATP. Ex: bomba sódio potássio ATPase ( exerce controle no volume celular e mantém o potencial de ação) e Ca2+ ATPase.
SECUNDÁRIO: Co-transporte e contratransporte.

OSMOSE: é o fluxo de água através da membrana semipermeável, devido a diferença de concentração de solutos. Essa concentração leva a uma diferença pressão osmótica e essa dessa pressão faz com que a água flua por osmose.
PRESSÃO OSMOTICA: é a pressão necessária para impedir o fluxo de água pela membrana semipermeável.

CANAIS IONICOS: são proteínas integrais que quando aberto permite a passagem de certos íons, sendo seletivos. Esses canais são controlados por comportas. Tipos de canais:
CANAIS VOLTAGEM DEPEDENTE: são controladas pela variação de potencial de membrana.
CANAIS LIGANDO DEPENDENTE: depende da ligação da molécula para se abrir, essas podem ser hormônios, neurotransmissores e segundo mensageiro.
POTENCIAL DE DIFUSÃO: É a diferença de potencial gerada na membrana quando o íon se difunde.
POTENCIAL DE EQUILIBRIO: as forças químicas e elétrica age nas cargas iguais mais opostas levando ao equilíbrio.
PERIODO REFRATARIO:
ABSOLUTO: no período refratário absoluto um potencial de ação não ocorre enquanto o ultimo não estiver cessado.
RELATIVO: pode gerar um outro potencial de ação, mas se o estimulo for grande o suficiente para atingir o limiar. Esse potencial tem que ser de –40mV.

POTENCIAL DE AÇÃO
O potencial de ação é um fenômeno das células excitáveis, consistindo em despolarização seguida por repolarização.
PROPAGAÇÃO: ocorre na mesma intensidade de estímulo. A propagação ocorre de maneira continua onde despolariza e repolariza até o destino.
VELOCIDADE DE CONDUÇÃO: envolve a constante de tempo. Essa tem que ser menor para que a velocidade de condução seja rápida. A velocidade de condução também depende da resistência. Quanto maior a resistência, menor a área, mais lenta a propagação.
FIBRAS AMIELINIZADAS: a velocidade de propagação é lenta, pois o potencial percorre por toda fibra numa alta resistência. Velocidade de 0.25m/s.
FIBRAS MIELINIZADAS: a mielina aumenta a resistência periférica, só que não diminui a velocidade de condução, pois o potencial de ação vai percorrer por junções comunicantes ( Nodo de Ranvier), onde tem uma resistência menor, daí a velocidade de propagação é rápida. Essa propagação é chamada de saltitante.

TIPOS DE SINAPSES
ELETRICA: a corrente flui de uma célula excitável para a seguinte via de baixa resistência ( junções comunicantes). É encontrado no músculo liso e cardíaco.
QUIMICA: é transmitida através da fenda sináptica pelo neurotrasmissor, sendo unidirecional, da célula pós sináptica para a pré sináptica.

JUNÇÃO NEUROMUSCULAR:
UNIDADE MOTORA:
Motoneurônio: São as células cujos os nervos suprem as fibras musculares
Unidade Motora: Um só motoneurônio e todas as fibras que este inerva.

1. Os potenciais de ação se propagam ao longo do axônio. Essa propagação do potencial vai atingir a fenda pré - sináptica onde vai induzir abertura dos canais de cálcio, esse cálcio influi para a terminação, ao longo do seu gradiente eletroquímico.
2. A entrada de Ca2+, promove a liberação de acetilcolina, sintetizada e armazenada em vesículas neurais.
3. A Ach se difunde através da fenda sináptica até a pos – sináptica, onde se liga ao receptores nicotínicos, esse sendo ligando dependente. Essa ligação vai induzir modificação da estrutura do receptor onde vai gerar a ativação e induzindo a abertura dos canais de Na+ e K+ .
4. Quando os canais de Na+ e K+ , ele irão se difundir e o Na+ irá causar uma despolarização da placa motora gerando um potencial de ação que se propaga ao longo da fibra.
5. Essa placa só atinge o potencial de repouso quando a Ach é degradado em colina + acetato pela acetilcolinesterase.
AGENTES QUE ALTERAM O FUNCIONAMENTO DA JUNÇÃO NEUROMUSCULAR

Tóxina botulínica - Bloqueia a liberação de Ach pelas terminais pré-sinápticas.
Curare- Compete pelos receptores nicotínicos daplaca motora diminuindo o PPM.
D- tubocurarina- compete com a Ach nos receptores e é usada para relaxar a musculatura Esquelético.
Inibidores da acetilcolinesterase- Neostigmina, impede a degradação da Ach na fenda sináptica. Prolonga e aumenta a ação da Ach.Usada para tratar Miastenia gravis.
Miastenia gravis- Doença que leva a uma fraqueza do músculo esquelético e fadigabilidade. Os receptores de Ach são bloqueados por anticorpos.
Hemicolínio- Bloqueia a recaptação da colina pela terminal pré- sináptica.

TIPOS DE DISPOSIÇÃO DAS SINÁPSES
Sinapses de um para um
Sinapses de um para muitos ( O motoneurônio produz rajada de PA na célula pos-sináptica)
Sinapses de muitos para um (muitas células pré-sinápticas convergem para uma pós-sináptica
A Entrada Sináptica – Potenciais Pós sinápticos Excitatório e Inibitório
Potenciais Pós sinápticos Excitatório – despolarizam células pós-sinápticas (PPSEs) -abertura de canal de Na+
Neurotransmissores: noradrenalina (NA), Acetilcolina (Ach), Dopamina, epinefrina e serotonina.
Potenciais Pós sinápticos Inibitório- Hiperpolarizam a célula pós-sináptica (PPSIs) - abertura de canal de Cl-
Neurotransmissores: gama-aminobutírico (GABA) , Glicina.

INTEGRAÇÃO DA INFORMAÇÃO SINÁPTICA
Somação Espacial
Duas entradas pré-sinápticas chegam à célula pós-sináptica ao mesmo tempo.
Somação Temporal
Duas entradas pré-sinápticas chegam à célula pós-sináptica em rápida sucessão.

OUTROS FENÔMENOS QUE ALTERAM A ATIVIDADE SINÁPTICA
Facilitação, aumentação e potenciação pós-tetânica.
Talvés por acúmulo de Ca++.
Fadiga sináptica estimulação repetitiva produz resposta menor do que a esperada.
REFERÊNCIA:
LINDA S. CONSTANZO. Fisiología . Guanabara Kogan, Rj 1995.
Conteúdo retirado do material didático da professora Edlene Felix

7 comentários:

Mary disse...

Muito Bom!!!! Amei o site,é um ótimo centro de pesquisa para nós estudantes e profissionais da área de saúde e tbm para quem deseja aprender mais sobre a fisiologia da VIDA!!!

iara marina disse...

Muito legal a forma abrangente e direta como foi abordada a fisiologia celular neste site!
Eu recomendo este site para pesquisa de estudantes ou interessados no assunto. A linguagem não restringe informações a nenhum grupo!

Daylanne Taisa disse...
Este comentário foi removido pelo autor.
Daylanne Taisa disse...

gostei... é bom de estudar sem contar que é bem explicadinho...

Raiani disse...

Realmente está muito bom, mas faltou falar do processo da bomba de sódio e potássio, e de como é feito a polarização, despolarização, repolarização e hiperpolarização.

Bruno Leith disse...

MUITO FRACO, fiquei triste porque o que eu busquei só tem 1 paragrafo de 2 linhas. Proteinas Integrais

jorene Major disse...

Optimo amei